欢迎来到奇葩栖息地!欢迎加入Discord服务器:XfrfHCzfbW请先至特殊:参数设置验证邮箱后再进行编辑。特殊:参数设置挑选自己想要使用的小工具!不会编辑?请至这里学习Wikitext语法。

高观点下的高中物理:修订间差异

来自奇葩栖息地
添加913字节 、​ 2022年3月23日 (星期三)
Zly讨论 | 贡献
第391行:
====== 定义 ======
====== 简谐振动 ======
 
对于简谐振动,我们有动力学方程<math>ma = -kx</math>
 
即<math>m\ddot{x} + kx = 0</math>
 
不妨设<math>x = Ae^{\textup{i}\omega t}</math>
 
则<math>-mA\omega^2e^{\textup{i}\omega t} + kAe^{\textup{i}\omega t} = 0</math>
 
解得<math>\omega = \pm\sqrt{\frac{k}{m}}</math>
 
所以<math>x(t) = C_1e^{\textup{i}\sqrt{\frac{k}{m}}t} + C_2e^{-\textup{i}\sqrt{\frac{k}{m}}t}</math>
 
<math>a(t) = -\frac{k}{m}C_1e^{\textup{i}\sqrt{\frac{k}{m}}t} -\frac{k}{m}C_2e^{-\textup{i}\sqrt{\frac{k}{m}}t}</math>
 
可带入特解<math>x(0) = A,a(0) = -\frac{kx(0)}{m}</math>
 
解得<math>C_1 = C_2 = \frac{1}{2}A</math>
 
所以<math>x(t) = \frac{1}{2}A\left(e^{\textup{i}\sqrt{\frac{k}{m}}t} + e^{-\textup{i}\sqrt{\frac{k}{m}}t}\right)</math>
 
通过欧拉公式化简可以得到<math>x(t) = A\cos(\omega t),\omega = \sqrt{\frac{k}{m}}</math>
 
所以<math>T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{m}{k}}</math>
 
====== 受迫振动 ======
====== 阻尼振动 ======
286

个编辑