欢迎来到奇葩栖息地!欢迎加入Discord服务器:XfrfHCzfbW请先至特殊:参数设置验证邮箱后再进行编辑。特殊:参数设置挑选自己想要使用的小工具!不会编辑?请至这里学习Wikitext语法。

初中数学中的基本事实:修订间差异

来自奇葩栖息地
添加的内容 删除的内容
(// Edit via InPageEdit)
 
(// Edit via InPageEdit)
第2行: 第2行:


初中数学的几何{{Heimu|当然是欧几里得几何}},为了解题方便{{Heimu|实际上是不会证明}},从而在教科书中规定了比欧几里得在《几何原本》中规定的5条公设(Αἰτήματα ε΄.)更多的所谓'''“基本事实”'''。
初中数学的几何{{Heimu|当然是欧几里得几何}},为了解题方便{{Heimu|实际上是不会证明}},从而在教科书中规定了比欧几里得在《几何原本》中规定的5条公设(Αἰτήματα ε΄.)更多的所谓'''“基本事实”'''。

因此,本文将列出这些基本事实,并对5条公设以外的基本事实逐个去{{Heimu|批判}}证明。


== 《几何原本》中的公设 ==
== 《几何原本》中的公设 ==
第21行: 第23行:


{{from|α΄. Ἠιτήσθω ἀπὸ παντὸς σημείου ἐπὶ πᾶν σημεῖον εὐθεῖαν γραμμὴν ἀγαγεῖν.<br>β΄. Καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ' εὐθείας ἐκβαλεῖν.<br>γ΄. Καὶ παντὶ κέντρῳ καὶ διαστήματι κύκλον γράφεσθαι.<br>δ΄. Καὶ πάσας τὰς ὀρθὰς γωνίας ἴσας ἀλλήλαις εἶναι.<br>ε΄. Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ' ἄπειρον συμπίπτειν, ἐφ' ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες.|Στοιχεῖα α΄}}
{{from|α΄. Ἠιτήσθω ἀπὸ παντὸς σημείου ἐπὶ πᾶν σημεῖον εὐθεῖαν γραμμὴν ἀγαγεῖν.<br>β΄. Καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ' εὐθείας ἐκβαλεῖν.<br>γ΄. Καὶ παντὶ κέντρῳ καὶ διαστήματι κύκλον γράφεσθαι.<br>δ΄. Καὶ πάσας τὰς ὀρθὰς γωνίας ἴσας ἀλλήλαις εἶναι.<br>ε΄. Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ' ἄπειρον συμπίπτειν, ἐφ' ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες.|Στοιχεῖα α΄}}

== 教科书中的基本事实 ==


{{Study}}
{{Study}}

2021年6月10日 (四) 15:38的版本

该页面的编辑正在进行中。

请帮助我们扩充或改进这篇文章。讨论页可能包含一些建议。

初中数学的几何当然是欧几里得几何,为了解题方便实际上是不会证明,从而在教科书中规定了比欧几里得在《几何原本》中规定的5条公设(Αἰτήματα ε΄.)更多的所谓“基本事实”

因此,本文将列出这些基本事实,并对5条公设以外的基本事实逐个去批判证明。

《几何原本》中的公设

《几何原本》中有“公设”与“公理”之分,而近代数学对此不再区分,都称“公理”。

这5条公设是翻译瞎糊的将就看

  1. 从一点向另一点可以引一条直线。
  2. 任意线段能无限延伸成一条直线。
  3. 给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
  4. 所有直角都相等。
  5. 若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。

在徐光启、利玛窦所译的版本中,公设被称作“求作”。求作者,不可言不得作。

一、此點至彼點可作一線段。
二、線段可從彼界直行引長之。
三、線段作半徑,點為心,可作一圓。
四、直角皆等。
五、角甲乙丙合角乙甲丁小于二直角者,則乙丙從丙直行引長必相交甲丁從丁直行引長。

[取自《几何原本》卷一]

而欧几里得的希腊文原文为目害警告

α΄. Ἠιτήσθω ἀπὸ παντὸς σημείου ἐπὶ πᾶν σημεῖον εὐθεῖαν γραμμὴν ἀγαγεῖν.
β΄. Καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ' εὐθείας ἐκβαλεῖν.
γ΄. Καὶ παντὶ κέντρῳ καὶ διαστήματι κύκλον γράφεσθαι.
δ΄. Καὶ πάσας τὰς ὀρθὰς γωνίας ἴσας ἀλλήλαις εἶναι.
ε΄. Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ' ἄπειρον συμπίπτειν, ἐφ' ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες.

[取自Στοιχεῖα α΄]

教科书中的基本事实