欢迎来到奇葩栖息地!欢迎加入Discord服务器:XfrfHCzfbW请先至特殊:参数设置验证邮箱后再进行编辑。特殊:参数设置挑选自己想要使用的小工具!不会编辑?请至这里学习Wikitext语法。

代微积拾级卷一

来自奇葩栖息地


米利堅羅米士譔
英國  偉烈亞力  口譯  海寧  李善蘭  筆述

代數幾何一
以代數推幾何

凡幾何題理,以代數顯之,簡而易明。代數號益幾何匪淺,故近時西國論幾何諸書恒用之。

幾何題中用代數之位,覺甚便。準之作圖,能顯題之全,所設所求諸數,俱包其内。法用代數已知未知諸元,代題已知未知諸數。視圖中諸叚有連屬之理者,依幾何諸題理推之,本題有若干未知數,須推得若干代數式。旣有若干式,以代數術馭之,旣得諸數。

設題
  • 今有句,有股弦和,求股。

如圖,呷𠮙𠰳句股形,命句呷𠮙爲乙,股𠮙𠰳爲天,股弦和爲申,則弦必爲[math]\displaystyle{ 申\top天 }[/math]

依幾何理,

𠮙𠮙𠰳[math]\displaystyle{ \xlongequal{\quad} }[/math]𠰳

代作

[math]\displaystyle{ 乙^二\bot天^二\xlongequal{\quad}(申\top天)^二\xlongequal{\quad}申^二\top二申天\bot天^二 }[/math]

式两邊各去[math]\displaystyle{ 天^二 }[/math],則得

[math]\displaystyle{ 乙^二\xlongequal{\quad}申^二\top二申天 }[/math]

卽爲

[math]\displaystyle{ 二申天\xlongequal{\quad}申^二\top乙^二 }[/math]

故得

[math]\displaystyle{ 天\xlongequal{\quad}\frac{二申}{申^二\top乙^二} }[/math]

觀此式卽知凡句股形之股,等于股弦和冪内減句冪,以倍股弦和約之之數。如句三尺,股弦和九尺,則[math]\displaystyle{ \frac{二申}{申^二\top乙^二} }[/math][math]\displaystyle{ \frac{二\times九}{九^二\top三^二} }[/math]等于四,卽股也。

  • 今有三角形之底與中垂綫,求所容正方邊。

如圖,呷𠮙𠰳三角形,呷𠮙爲底,𠰳爲中垂綫,叮𱒐𠯇𱓒爲所容正方形。命底爲乙,中垂綫爲辛,方邊爲天,則𠰳𠰃必爲[math]\displaystyle{ 辛\top天 }[/math]𱓒𠯇與呷𠮙平行,故依相似三角形之理有比例

𠮙:𱓒𠯇::𠰳:𠰳𠰃

代作

[math]\displaystyle{ 乙:天::辛:辛\top天 }[/math]

凡四率比例,首尾二率相乘等于中二率相乘,故有式

[math]\displaystyle{ 乙辛\top乙天\xlongequal{\quad}辛天 }[/math]

所以

[math]\displaystyle{ 天\xlongequal{\quad}\frac{乙\bot辛}{乙辛} }[/math]

卽知所容正方之邊,等于底與中垂綫相乘,以底垂和約之。如底爲十二尺,中垂綫爲六尺,則得所容方邊四尺。