本页面允许您检查滥用过滤器根据某次单独更改所生成的变量。

根据本次更改生成的变量

变量
用户账号名称 (user_name)
'Zly'
用户所在群组(包括隐藏群组) (user_groups)
[ 0 => 'autopatrol', 1 => '*', 2 => 'user', 3 => 'autoconfirmed', 4 => 'emailconfirmed' ]
用户是否通过移动版界面编辑 (user_mobile)
false
页面编号 (page_id)
175
页面命名空间 (page_namespace)
0
页面标题(不含命名空间) (page_title)
'初高中物理对比'
完整页面标题 (page_prefixedtitle)
'初高中物理对比'
操作 (action)
'edit'
编辑摘要/原因 (summary)
'/* 高中有关的所有公式、定律、定理 */ '
旧的内容模型 (old_content_model)
'wikitext'
新的内容模型 (new_content_model)
'wikitext'
在编辑之前旧页面的wikitext (old_wikitext)
'{{wip}} {{tex}} {{quote|初中物理是文科。|夏军}} 众所周知,初中物理和高中物理的理念并不相同,几乎背道而驰。 此页面会对初中物理的不合理之处进行列举,并与高中物理进行比较。当然,也会引入更为严谨的物理概念。 若无特殊说明,文中初中物理教材内容默认选自苏科版教材,高中物理教材内容默认选自人教版教材。 == 力学 == === 质点运动学 === ==== 初高中对比 ==== 初中物理的运动学章节位于八年级上册第五章。 整本八上教材只出现了一个公式:<math>v=\frac{s}{t}</math>,而这甚至在小学都人尽皆知。同时,初中仅介绍了匀速直线运动。 高中物理的运动学位于必修一的第一、二章。首先,它介绍了质点、参考系、时间和位移的概念。 初中的速度是标量,而速度实际上是矢量。这是由于初中的速度是用路程(<math>s</math>)这个标量得到的,而高中的速度则是用位移(<math>x</math>)这个矢量得到的。另外,速度的大小称作速率,是一个标量。 * <math>v=\frac{\Delta x}{\Delta t}</math> 而在直线运动中,高中物理介绍的是匀变速直线运动。这就需要引入加速度(<math>a</math>)这个物理量。 * <math>a=\frac{\Delta v}{\Delta t}=\frac{v_{t}-v_{0}}{t}</math> 随之而来的是公式: * <math>v=v_{0}+at</math> * <math>x=\frac{v_{0}+v}{2}t=v_{0}t+\frac{1}{2}at^{2}</math> 以及其推论: * <math>v_{t}^{2}-v_{0}^{2}=2ax</math> * <math>v_{\frac{t}{2}}=\frac{v_{0}+v_{t}}{2}=\overline{v}=\frac{x}{t}</math> * <math>v_{\frac{s}{2}}=\sqrt{\frac{v_{0}^{2}+v_{t}^{2}}{2}}</math> * <math>\Delta x=aT^{2}</math> 相比之下,初中的运动学显得极其苍白无力。{{Heimu|甚至还不如小学数学(?)}} 在这之后,高中物理还介绍了自由落体运动。这里提到了在初中没有名分的“<math>g</math>”。它在初中仅仅“是一个比值”,大小为<math>10\mathrm{N/kg}</math>。 这是因为初中并没有加速度的概念,也就不可能进一步介绍。而在高中物理,明确了所谓的“<math>g</math>”其实是自由落体加速度,又称重力加速度。在一般的计算中,<math>g</math>取<math>9.8\mathrm{m/s^{2}}</math>或<math>10\mathrm{m/s^{2}}</math>。<math>g</math>的单位既可以是<math>\mathrm{m/s^{2}}</math>,也可以是<math>\mathrm{N/kg}</math>,这涉及到牛顿第二定律的内容。 在书中,自由落体运动存在2个公式变式: * <math>v=gt</math> * <math>h=\frac{1}{2}gt^{2}</math> ==== 更为严谨的补充 ==== 在匀速直线运动中,速度是位移与所用时间的比值: <math>v=\frac{x}{t}</math>。 在变速运动中,速度分为平均速度和瞬时速度。平均速度为<math>\overline{v}=\frac{\Delta x}{\Delta t}</math>。瞬时速度为<math>\Delta t</math>趋近于零时的平均速度,数学表达式为<math>v=\mathop{{ \text{lim} }}\limits_{{ \Delta t \to 0}}\frac{{ \Delta x}}{{ \Delta t}}=\frac{\mathrm{d}x}{\mathrm{d}t}</math>。 在变速运动中,平均加速度为<math>\overline{a}=\frac{\Delta v}{\Delta t}</math>。瞬时加速度为<math>\frac{\Delta v}{\Delta t}</math>趋近于零时的平均加速度,数学表达式为<math>a=\mathop{{ \text{lim} }}\limits_{{ \Delta t \to 0}}\frac{{ \Delta v}}{{ \Delta t}}=\frac{\mathrm{d}v}{\mathrm{d}t}</math>。 === 质点静力学 === ==== 初高中对比 ==== 初中物理的力学章节位于八年级下册第八章。 此章中只出现了一个公式:<math>G=mg</math>,并介绍了力的基本概念、弹力、重力、力的示意图、摩擦力(滑动摩擦力)以及牛顿第三定律(未出现定律名称,表述为“力的作用是相互的”)等内容。总的来说,初中的力学这一章中的大部分概念和高中差别并不大。 高中物理的力学章节位于必修一第三章,介绍了重力、弹力、摩擦力、牛顿第三定律、力的合成与分解和共点力的平衡等内容。其中出现了以下公式: * <math>G=mg</math> * <math>F_{f}=kx</math> * <math>F_{f}=\mu F_{N}</math>(以及变式<math>\mu =\frac{F_{f}}{F_{N}}</math>) <math>F_{f}</math>常被直接记作<math>f</math>。 在初中的力学章节中,最大的问题就是关于摩擦力的表述: {{from|一个物体在另一个物体表面上滑动时,会受到阻碍它运动的力,这种力叫做滑动摩擦力。|八年级下册第八章}} 鉴于初中没有提到静摩擦力,这显得更加不可理喻。只学过初中物理的同学会很痛苦,他们会觉得“摩擦力是个坏蛋”,只能阻碍运动。而实际上,摩擦力只是阻碍相对运动(滑动摩擦力)或相对运动趋势(静摩擦力),而不是阻碍运动。随便举一个例子,传送带上的物体受到摩擦力,但其并没有阻碍物体的运动。 === 质点动力学 === ==== 初高中对比 ==== 初中物理的力与运动的关系章节位于八年级下册第九章。 此中只出现了牛顿第一定律,又被称为惯性定律: {{from|任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。|八年级下册第九章}} 而这之后,由于没有加速度这里物理量的加入,初中的质点动力学便止步于此。 高中的动力学在静力学和运动学的基础上进行组合,得到了动力学。其中起到关键的桥梁作用的便是'''牛顿第二定律:'''<math>F=ma</math> 文字表述为: {{from|物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。|高中必修一}} 从文字表述不难看出加速度有了自己的决定式,即牛顿第二定律的变式:<math>a=\frac{F}{m}</math> 有了它,牛顿三定律才算是成功集齐,自此,牛顿力学逐渐圆满。 === 机械能 === ====初高中对比==== 初中的机械能讲学的分布零散,集中在九上第十一、十二章。 其中定义了机械能、机械功、有用功、总功、额外功、机械效率、动能、重力势能和弹性势能这些物理量。 但是大多数的定义都是单薄的,有些表述不尽完美。 ===== 功 ===== 功的定义: {{from|作用在物体上的力与物体在力的方向上移动的距离的乘积叫功。|九年级上册第十一章}} 即:<math>W=Fs</math> 那么问题来了,对于一个问题,假如我们并不知道物体在力的方向上移动的距离呢?我们知道,力有方向,而距离没有方向(所以初中没有负功),难道功有方向吗?(然而事实证明并没有。) [[文件:Work and Displacement.png|缩略图|右|力、位移和距离]] 这时我们就会发现:根据高中数学,能够将向量乘上另外一个量而使得这个乘积的结果为一个没有方向的量(标量)时,满足条件的只可能是点乘运算,这也就代表着距离应该是向量,可是显然距离不是向量(向量不会是曲线,就像图中所示)。 所以,我们应该使用一种向量形式的物理量, 这个物理量在质点运动学中称为'''位移'''。 于是,我们有:<math>W=\pmb{F}\cdot\pmb{l}</math> 即:<math>W=Fl\cos\theta</math> ===== 机械效率 ===== 机械效率出自九年级上册十一章。(这一概念在高中物理中是没有的。{{heimu|或许是因为初中物理看实际生活,高中物理重理论分析的原因?|你知道的太多了}}) 首先是几个概念: 1.有用功<math>(W_{有用})</math>:必须需要做的功。 2.额外功<math>(W_{额外})</math>:在使用机械时,不对物体做功有帮助但是而又不得不做的功。{{heimu|难道这部分功就不是必须要做的功了吗?|你知道的太多了}} 3.总功<math>(W_{总})</math>:有用功和额外功的总和。 综上,就可定义机械效率:<math>\eta = \frac{W_{有用}}{W_{总}} \times 100 \% </math>。 ===== 动能 ===== 动能出自九年级上册十一章 表述为:因物体运动而具有的能量叫动能,动能与物体的质量和速度有关,质量越大,速度越大,物体的动能越大。 可是,也只有这个了。 高中给出了动能的公式,即:<math>E_k = \frac{1}{2}mv^2</math>(其实在学更多之后,你会发现初中的表述更准确。) <del>相对论情况下的动能公式:<math>E_k = \frac{m_0 c^2}{\sqrt{1-\frac{v^2}{c^2}}} - m_0 c^2</math></del>(你知道的太多了) 关于初中物理书上的动能实验,高中物理中是可以明确知道这个实验是错的,但是又没错,总之歪打正着。<del>编书者也真是用心良苦了</del>。 {{heimu|根据完全非弹性对心碰撞,动能损失和整个系统的原动能成正比|你知道的太多了}} ===== 势能 ===== 势能<math>\left(E_p \right)</math>又称“位能”,指的是 '''一个物体因为它所处的位置而具有的能量''',就是说,有一种力做功,它只看物体做功前后的相对位置关系,这类力称为'''“保守力”''' 在初中物理中,只提及了重力势能和弹性势能,而且只探究了重力势能。 最终有这样的结论:重力势能和物体的质量和它所处的高度有关,物体质量越大,高度越高,重力势能越大。 其实,并不需要高中物理,由初中物理对功的定义,我们就可以得出,物体移动的距离,在重力方向上永远是竖直的,即物体与零势能面的高度差。 这样想,我们就可以直接导出重力势能公式:<math>E_G = mgh</math>.{{heimu|这或许是初中物理为数不多的成功之处|你知道的太多了}} 弹性势能在初中物理中只有一张图,即撑杆跳。 而高中物理则给出了弹性势能的公式:<math>E_p = \frac{1}{2}kx^2</math> 高中物理中还有引力势能:<math>E_p = -\textup{G}\frac{ m_1 m_2}{r}</math> 这是选择无穷远处为零势能面。 如果选择地表为零势能面,那么在地表附近<math>\left(h \ll r \right)</math>,我们有<math>mg = \textup{G}\frac{ m_1 m_2}{r^2}</math> 其实还有很多势能,如:分子势能,电势能等等。 ==== 功能原理和机械能守恒定律 ==== 功能原理:系统的机械能等于系统内势能、动能和非保守力所做功以及系统所受外力做的功的总和, 即<math>E = E_k + E_p + A_{\textup{内非}} + A_{\textup{外}}</math> 机械能守恒定律:当系统不受外力,系统内不受非保守力时,该系统机械能守恒, 即<math>E_p + E_k = \textup{恒量}</math> 或<math>\Delta E_p + \Delta E_k = 0</math> === 动量、角动量 === ==== 初高中对比 ==== 动量和角动量在初中物理中自然是没有的,但是它有杠杆平衡条件公式:<math>\textup{动力}\left(F_1 \right)\times \textup{力臂}\left(L_1\right) = \textup{阻力}\left(F_2\right)\times \textup{阻力臂}\left(L_2\right)</math> 力臂在高中的转动问题中被叫做'''径矢''' ,注意到力和力臂是叉乘,所以'''杠杆平衡条件公式的实质是力矩平衡'''。 力矩可以写为<math>M = F \times l</math> ==== 高中有关的所有公式、定律、定理 ==== {{heimu|(包括物竞)|你知道的太多了}} 动量:<math>p = mv</math> 冲力:<math>F = \lim_{\Delta t \to 0}{\frac{m \Delta v}{\Delta t}} = ma</math> 动量定理:<math>\sum{I_i} = \sum {m_i v_i}</math>(这里<math>I</math>是冲量,量纲同动量) 动量守恒定律:系统在不受外力的情况下动量矢量和为零,即<math>\sum {m_i v_i} = 0</math> 转动惯量<math>I</math>(下面使用<math>I</math>的都是转动惯量) 常见物体的转动惯量,请见https://zhuanlan.zhihu.com/p/35679252 角加速度:<math>\beta = \lim_{\Delta t \to 0}{\frac{\Delta \omega}{\Delta t}}</math> 角动量:<math>J = r\times p = I\omega</math> 角动量守恒定律:在转动系统中,若物体只受有心力则角动量守恒,即<math>J = \textup{恒量}</math> 力矩:<math>M = \lim_{\Delta t \to 0}{\frac{\Delta J}{\Delta t}} = I\beta</math> 平行轴定理:设刚体质量为<math>m</math>,选择过刚体质心的转动轴时刚体的转动惯量为<math>I_0</math>,则相对于距离该转轴为<math>d</math>的转轴,有<math>I = I_0 + md^2</math> 刚体转动动能:<math>E_k = \frac{1}{2}I\omega^2</math> 刚体平衡条件:平动<math>\sum{F_i} = 0</math>,转动:<math>\sum{M_i} = 0</math> === 总结(美妙的守恒律) === 从古至今,物理中最美妙的就是守恒与不守恒。 目前,人们发现的大多是守恒律。 比如,能量守恒、动量守恒、角动量守恒、电荷守恒,以及霍金等人的猜想:信息守恒。 朗道曾经说:能量守恒体现时间平移对称性,动量守恒体现空间平移对称性,角动量守恒体现空间转动对称性,电荷守恒体现整体规范对称性。{{heimu|具体怎么证请参考《朗道物理学教程:力学》|你知道的太多了}} 但是,不守恒也有它的独到之处,宇称不守恒就诠释了宇宙在弱力作用下,正反物质不守恒,这才导致了物质湮灭时物质更占优势,而这万分之一的优势则构成了现在宇宙。 == 电磁学 == === 静电场 === === 恒定电场 === === 磁场 === === 交流电 === === 电磁波 === == 光学 == === 几何光学 === === 波动光学 === == 热学 == === 热学基本概念 === === 物质的聚集态 === === 热力学定律 === == 近代物理学 == === 狭义相对论 === === 量子力学 === === 原子物理 === [[分类:物理]] {{Study}}'
在编辑之后新页面的wikitext (new_wikitext)
'{{wip}} {{tex}} {{quote|初中物理是文科。|夏军}} 众所周知,初中物理和高中物理的理念并不相同,几乎背道而驰。 此页面会对初中物理的不合理之处进行列举,并与高中物理进行比较。当然,也会引入更为严谨的物理概念。 若无特殊说明,文中初中物理教材内容默认选自苏科版教材,高中物理教材内容默认选自人教版教材。 == 力学 == === 质点运动学 === ==== 初高中对比 ==== 初中物理的运动学章节位于八年级上册第五章。 整本八上教材只出现了一个公式:<math>v=\frac{s}{t}</math>,而这甚至在小学都人尽皆知。同时,初中仅介绍了匀速直线运动。 高中物理的运动学位于必修一的第一、二章。首先,它介绍了质点、参考系、时间和位移的概念。 初中的速度是标量,而速度实际上是矢量。这是由于初中的速度是用路程(<math>s</math>)这个标量得到的,而高中的速度则是用位移(<math>x</math>)这个矢量得到的。另外,速度的大小称作速率,是一个标量。 * <math>v=\frac{\Delta x}{\Delta t}</math> 而在直线运动中,高中物理介绍的是匀变速直线运动。这就需要引入加速度(<math>a</math>)这个物理量。 * <math>a=\frac{\Delta v}{\Delta t}=\frac{v_{t}-v_{0}}{t}</math> 随之而来的是公式: * <math>v=v_{0}+at</math> * <math>x=\frac{v_{0}+v}{2}t=v_{0}t+\frac{1}{2}at^{2}</math> 以及其推论: * <math>v_{t}^{2}-v_{0}^{2}=2ax</math> * <math>v_{\frac{t}{2}}=\frac{v_{0}+v_{t}}{2}=\overline{v}=\frac{x}{t}</math> * <math>v_{\frac{s}{2}}=\sqrt{\frac{v_{0}^{2}+v_{t}^{2}}{2}}</math> * <math>\Delta x=aT^{2}</math> 相比之下,初中的运动学显得极其苍白无力。{{Heimu|甚至还不如小学数学(?)}} 在这之后,高中物理还介绍了自由落体运动。这里提到了在初中没有名分的“<math>g</math>”。它在初中仅仅“是一个比值”,大小为<math>10\mathrm{N/kg}</math>。 这是因为初中并没有加速度的概念,也就不可能进一步介绍。而在高中物理,明确了所谓的“<math>g</math>”其实是自由落体加速度,又称重力加速度。在一般的计算中,<math>g</math>取<math>9.8\mathrm{m/s^{2}}</math>或<math>10\mathrm{m/s^{2}}</math>。<math>g</math>的单位既可以是<math>\mathrm{m/s^{2}}</math>,也可以是<math>\mathrm{N/kg}</math>,这涉及到牛顿第二定律的内容。 在书中,自由落体运动存在2个公式变式: * <math>v=gt</math> * <math>h=\frac{1}{2}gt^{2}</math> ==== 更为严谨的补充 ==== 在匀速直线运动中,速度是位移与所用时间的比值: <math>v=\frac{x}{t}</math>。 在变速运动中,速度分为平均速度和瞬时速度。平均速度为<math>\overline{v}=\frac{\Delta x}{\Delta t}</math>。瞬时速度为<math>\Delta t</math>趋近于零时的平均速度,数学表达式为<math>v=\mathop{{ \text{lim} }}\limits_{{ \Delta t \to 0}}\frac{{ \Delta x}}{{ \Delta t}}=\frac{\mathrm{d}x}{\mathrm{d}t}</math>。 在变速运动中,平均加速度为<math>\overline{a}=\frac{\Delta v}{\Delta t}</math>。瞬时加速度为<math>\frac{\Delta v}{\Delta t}</math>趋近于零时的平均加速度,数学表达式为<math>a=\mathop{{ \text{lim} }}\limits_{{ \Delta t \to 0}}\frac{{ \Delta v}}{{ \Delta t}}=\frac{\mathrm{d}v}{\mathrm{d}t}</math>。 === 质点静力学 === ==== 初高中对比 ==== 初中物理的力学章节位于八年级下册第八章。 此章中只出现了一个公式:<math>G=mg</math>,并介绍了力的基本概念、弹力、重力、力的示意图、摩擦力(滑动摩擦力)以及牛顿第三定律(未出现定律名称,表述为“力的作用是相互的”)等内容。总的来说,初中的力学这一章中的大部分概念和高中差别并不大。 高中物理的力学章节位于必修一第三章,介绍了重力、弹力、摩擦力、牛顿第三定律、力的合成与分解和共点力的平衡等内容。其中出现了以下公式: * <math>G=mg</math> * <math>F_{f}=kx</math> * <math>F_{f}=\mu F_{N}</math>(以及变式<math>\mu =\frac{F_{f}}{F_{N}}</math>) <math>F_{f}</math>常被直接记作<math>f</math>。 在初中的力学章节中,最大的问题就是关于摩擦力的表述: {{from|一个物体在另一个物体表面上滑动时,会受到阻碍它运动的力,这种力叫做滑动摩擦力。|八年级下册第八章}} 鉴于初中没有提到静摩擦力,这显得更加不可理喻。只学过初中物理的同学会很痛苦,他们会觉得“摩擦力是个坏蛋”,只能阻碍运动。而实际上,摩擦力只是阻碍相对运动(滑动摩擦力)或相对运动趋势(静摩擦力),而不是阻碍运动。随便举一个例子,传送带上的物体受到摩擦力,但其并没有阻碍物体的运动。 === 质点动力学 === ==== 初高中对比 ==== 初中物理的力与运动的关系章节位于八年级下册第九章。 此中只出现了牛顿第一定律,又被称为惯性定律: {{from|任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。|八年级下册第九章}} 而这之后,由于没有加速度这里物理量的加入,初中的质点动力学便止步于此。 高中的动力学在静力学和运动学的基础上进行组合,得到了动力学。其中起到关键的桥梁作用的便是'''牛顿第二定律:'''<math>F=ma</math> 文字表述为: {{from|物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。|高中必修一}} 从文字表述不难看出加速度有了自己的决定式,即牛顿第二定律的变式:<math>a=\frac{F}{m}</math> 有了它,牛顿三定律才算是成功集齐,自此,牛顿力学逐渐圆满。 === 机械能 === ====初高中对比==== 初中的机械能讲学的分布零散,集中在九上第十一、十二章。 其中定义了机械能、机械功、有用功、总功、额外功、机械效率、动能、重力势能和弹性势能这些物理量。 但是大多数的定义都是单薄的,有些表述不尽完美。 ===== 功 ===== 功的定义: {{from|作用在物体上的力与物体在力的方向上移动的距离的乘积叫功。|九年级上册第十一章}} 即:<math>W=Fs</math> 那么问题来了,对于一个问题,假如我们并不知道物体在力的方向上移动的距离呢?我们知道,力有方向,而距离没有方向(所以初中没有负功),难道功有方向吗?(然而事实证明并没有。) [[文件:Work and Displacement.png|缩略图|右|力、位移和距离]] 这时我们就会发现:根据高中数学,能够将向量乘上另外一个量而使得这个乘积的结果为一个没有方向的量(标量)时,满足条件的只可能是点乘运算,这也就代表着距离应该是向量,可是显然距离不是向量(向量不会是曲线,就像图中所示)。 所以,我们应该使用一种向量形式的物理量, 这个物理量在质点运动学中称为'''位移'''。 于是,我们有:<math>W=\pmb{F}\cdot\pmb{l}</math> 即:<math>W=Fl\cos\theta</math> ===== 机械效率 ===== 机械效率出自九年级上册十一章。(这一概念在高中物理中是没有的。{{heimu|或许是因为初中物理看实际生活,高中物理重理论分析的原因?|你知道的太多了}}) 首先是几个概念: 1.有用功<math>(W_{有用})</math>:必须需要做的功。 2.额外功<math>(W_{额外})</math>:在使用机械时,不对物体做功有帮助但是而又不得不做的功。{{heimu|难道这部分功就不是必须要做的功了吗?|你知道的太多了}} 3.总功<math>(W_{总})</math>:有用功和额外功的总和。 综上,就可定义机械效率:<math>\eta = \frac{W_{有用}}{W_{总}} \times 100 \% </math>。 ===== 动能 ===== 动能出自九年级上册十一章 表述为:因物体运动而具有的能量叫动能,动能与物体的质量和速度有关,质量越大,速度越大,物体的动能越大。 可是,也只有这个了。 高中给出了动能的公式,即:<math>E_k = \frac{1}{2}mv^2</math>(其实在学更多之后,你会发现初中的表述更准确。) <del>相对论情况下的动能公式:<math>E_k = \frac{m_0 c^2}{\sqrt{1-\frac{v^2}{c^2}}} - m_0 c^2</math></del>(你知道的太多了) 关于初中物理书上的动能实验,高中物理中是可以明确知道这个实验是错的,但是又没错,总之歪打正着。<del>编书者也真是用心良苦了</del>。 {{heimu|根据完全非弹性对心碰撞,动能损失和整个系统的原动能成正比|你知道的太多了}} ===== 势能 ===== 势能<math>\left(E_p \right)</math>又称“位能”,指的是 '''一个物体因为它所处的位置而具有的能量''',就是说,有一种力做功,它只看物体做功前后的相对位置关系,这类力称为'''“保守力”''' 在初中物理中,只提及了重力势能和弹性势能,而且只探究了重力势能。 最终有这样的结论:重力势能和物体的质量和它所处的高度有关,物体质量越大,高度越高,重力势能越大。 其实,并不需要高中物理,由初中物理对功的定义,我们就可以得出,物体移动的距离,在重力方向上永远是竖直的,即物体与零势能面的高度差。 这样想,我们就可以直接导出重力势能公式:<math>E_G = mgh</math>.{{heimu|这或许是初中物理为数不多的成功之处|你知道的太多了}} 弹性势能在初中物理中只有一张图,即撑杆跳。 而高中物理则给出了弹性势能的公式:<math>E_p = \frac{1}{2}kx^2</math> 高中物理中还有引力势能:<math>E_p = -\textup{G}\frac{ m_1 m_2}{r}</math> 这是选择无穷远处为零势能面。 如果选择地表为零势能面,那么在地表附近<math>\left(h \ll r \right)</math>,我们有<math>mg = \textup{G}\frac{ m_1 m_2}{r^2}</math> 其实还有很多势能,如:分子势能,电势能等等。 ==== 功能原理和机械能守恒定律 ==== 功能原理:系统的机械能等于系统内势能、动能和非保守力所做功以及系统所受外力做的功的总和, 即<math>E = E_k + E_p + A_{\textup{内非}} + A_{\textup{外}}</math> 机械能守恒定律:当系统不受外力,系统内不受非保守力时,该系统机械能守恒, 即<math>E_p + E_k = \textup{恒量}</math> 或<math>\Delta E_p + \Delta E_k = 0</math> === 动量、角动量 === ==== 初高中对比 ==== 动量和角动量在初中物理中自然是没有的,但是它有杠杆平衡条件公式:<math>\textup{动力}\left(F_1 \right)\times \textup{力臂}\left(L_1\right) = \textup{阻力}\left(F_2\right)\times \textup{阻力臂}\left(L_2\right)</math> 力臂在高中的转动问题中被叫做'''径矢''' ,注意到力和力臂是叉乘,所以'''杠杆平衡条件公式的实质是力矩平衡'''。 力矩可以写为<math>M = F \times l</math> ==== 高中有关的所有公式、定律、定理 ==== {{heimu|(包括物竞)|你知道的太多了}} 动量:<math>p = mv</math> 冲力:<math>F = \lim_{\Delta t \to 0}{\frac{m \Delta v}{\Delta t}} = ma</math> 动量定理:<math>\sum{I_i} = \sum {m_i v_i}</math>(这里<math>I</math>是冲量,量纲同动量) 动量守恒定律:系统在不受外力的情况下动量矢量和为零,即<math>\sum {m_i v_i} = 0</math> 转动惯量<math>I</math>(下面使用<math>I</math>的都是转动惯量) 常见物体的转动惯量,请见[[https://zhuanlan.zhihu.com/p/35679252]] 角加速度:<math>\beta = \lim_{\Delta t \to 0}{\frac{\Delta \omega}{\Delta t}}</math> 角动量:<math>J = r\times p = I\omega</math> 角动量守恒定律:在转动系统中,若物体只受有心力则角动量守恒,即<math>J = \textup{恒量}</math> 力矩:<math>M = \lim_{\Delta t \to 0}{\frac{\Delta J}{\Delta t}} = I\beta</math> 平行轴定理:设刚体质量为<math>m</math>,选择过刚体质心的转动轴时刚体的转动惯量为<math>I_0</math>,则相对于距离该转轴为<math>d</math>的转轴,有<math>I = I_0 + md^2</math> 刚体转动动能:<math>E_k = \frac{1}{2}I\omega^2</math> 刚体平衡条件:平动<math>\sum{F_i} = 0</math>,转动:<math>\sum{M_i} = 0</math> === 总结(美妙的守恒律) === 从古至今,物理中最美妙的就是守恒与不守恒。 目前,人们发现的大多是守恒律。 比如,能量守恒、动量守恒、角动量守恒、电荷守恒,以及霍金等人的猜想:信息守恒。 朗道曾经说:能量守恒体现时间平移对称性,动量守恒体现空间平移对称性,角动量守恒体现空间转动对称性,电荷守恒体现整体规范对称性。{{heimu|具体怎么证请参考《朗道物理学教程:力学》|你知道的太多了}} 但是,不守恒也有它的独到之处,宇称不守恒就诠释了宇宙在弱力作用下,正反物质不守恒,这才导致了物质湮灭时物质更占优势,而这万分之一的优势则构成了现在宇宙。 == 电磁学 == === 静电场 === === 恒定电场 === === 磁场 === === 交流电 === === 电磁波 === == 光学 == === 几何光学 === === 波动光学 === == 热学 == === 热学基本概念 === === 物质的聚集态 === === 热力学定律 === == 近代物理学 == === 狭义相对论 === === 量子力学 === === 原子物理 === [[分类:物理]] {{Study}}'
编辑产生的差异 (edit_diff)
'@@ -180,5 +180,5 @@ 转动惯量<math>I</math>(下面使用<math>I</math>的都是转动惯量) -常见物体的转动惯量,请见https://zhuanlan.zhihu.com/p/35679252 +常见物体的转动惯量,请见[[https://zhuanlan.zhihu.com/p/35679252]] 角加速度:<math>\beta = \lim_{\Delta t \to 0}{\frac{\Delta \omega}{\Delta t}}</math> '
新页面大小 (new_size)
13711
编辑增加的行 (added_lines)
[ 0 => '常见物体的转动惯量,请见[[https://zhuanlan.zhihu.com/p/35679252]]' ]
更改的Unix时间戳 (timestamp)
1636124855