欢迎来到奇葩栖息地!欢迎加入Discord服务器:XfrfHCzfbW请先至特殊:参数设置验证邮箱后再进行编辑。特殊:参数设置挑选自己想要使用的小工具!不会编辑?请至这里学习Wikitext语法。

代微积拾级:修订间差异

来自奇葩栖息地
添加的内容 删除的内容
(创建页面,内容为“{{q|米利堅羅密士譔,英國偉烈亞力口譯,海寧李善蘭筆述。|《代微積拾級》}} '''《代微积拾级》''',由英国汉学家、来华传教士{{w|伟烈亚力}}(Alexander Wylie,1815年4月6日-1887年2月10日)口译,清代数学家{{w|李善兰}}(1811年1月22日-1882年12月9日)笔述的,1859年由上海墨海书馆出版。原著为美国数学家{{w|伊莱亚斯·罗密士}}(Elias Loomis,1811年8月7日-…”)
 
无编辑摘要
标签疑似添加Unicode新版用字
第1行: 第1行:
{{q|米利堅羅密士譔,英國偉烈亞力口譯,海寧李善蘭筆述。|《代微積拾級》}}
{{q|米利堅羅密士譔,英國偉烈亞力口譯,海寧李善蘭筆述。|《代微積拾級》}}


'''《代微积拾级》''',由英国汉学家、来华传教士{{w|伟烈亚力}}(Alexander Wylie,1815年4月6日-1887年2月10日)口译,清代数学家{{w|李善兰}}(1811年1月22日-1882年12月9日)笔述的,1859年由上海墨海书馆出版。原著为美国数学家{{w|伊莱亚斯·罗密士}}(Elias Loomis,1811年8月7日-1889年8月15日)于1851年出版的'''《解析几何和微积分初步》(''Elements of Analytical Geometry and of The Differential and Integral Calculus'')'''。
'''《代微积拾级》''',由英国汉学家、来华传教士{{w|伟烈亚力}}(Alexander Wylie,1815年4月6日-1887年2月10日)口译,清代数学家{{w|李善兰}}(1811年1月22日-1882年12月9日)笔述的,1859年由上海{{w|墨海书馆}}(The London Missionary Society Press)出版。原著为美国数学家{{w|伊莱亚斯·罗密士}}(Elias Loomis,1811年8月7日-1889年8月15日)于1851年出版的'''《解析几何和微积分初步》(''Elements of Analytical Geometry and of The Differential and Integral Calculus'')'''。


{{from|李善蘭,字壬叔,海寧人。諸生。從陳奐受經,於算術好之獨深。十歲即通九章,後得測圓海鏡、句股割圜記,學益進。疑割圜法非自然,精思得其理。嘗謂道有一貫,藝亦然。測圓海鏡每題皆有法有草,法者,本題之法也;草者,用立天元一曲折以求本題之法,乃造法之法,法之源也。算術大至躔離交食,細至米鹽瑣碎,其法至繁,以立天元一演之,莫不能得其法。故立天元一者,算學中之一貫也。並時明算如錢塘戴煦,南匯張文虎,烏程徐有壬、汪曰楨,歸安張福僖,皆相友善。咸豐初,客上海,識英吉利偉烈亞力、艾約瑟、韋廉臣三人,偉烈亞力精天算,通華言。善蘭以歐幾里幾何原本十三卷、續二卷,明時譯得六卷,因與偉烈亞力同譯後九卷,西士精通幾何者尟,其第十卷尤玄奧,未易解,譌奪甚多,善蘭筆受時,輒以意匡補。譯成,偉烈亞力歎曰:「西士他日欲得善本,當求諸中國也!」<br><br>偉烈亞力又言美國天算名家羅密士嘗取代數、微分、積分合為一書,分款設題,較若列眉,復與善蘭同譯之,名曰代微積拾級十八卷。代數變天元、四元,別為新法,微分、積分二術,又藉徑於代數,實中土未有之奇秘。善蘭隨體剖析自然,得力於海鏡為多。<br><br>粵匪陷吳、越,依曾國籓軍中。同治七年,用巡撫郭嵩燾薦,徵入同文館,充算學總教習、總理衙門章京,授戶部郎中、三品卿銜。課同文館生以海鏡,而以代數演之,合中、西為一法,成就甚眾。光緒十年,卒於官,年垂七十。<br><br>善蘭聰彊絕人,其於算,能執理之至簡,馭數至繁,故衍之無不可通之數,抉之即無不可窮之理。所著則古昔齋算學,詳藝文志。世謂梅文鼎悟借根之出天元,善蘭能變四元而為代數,蓋梅氏後一人云。|《清史稿·列傳二百九十四·疇人二》}}
{{from|李善蘭,字壬叔,海寧人。諸生。從陳奐受經,於算術好之獨深。十歲即通九章,後得測圓海鏡、句股割圜記,學益進。疑割圜法非自然,精思得其理。嘗謂道有一貫,藝亦然。測圓海鏡每題皆有法有草,法者,本題之法也;草者,用立天元一曲折以求本題之法,乃造法之法,法之源也。算術大至躔離交食,細至米鹽瑣碎,其法至繁,以立天元一演之,莫不能得其法。故立天元一者,算學中之一貫也。並時明算如錢塘戴煦,南匯張文虎,烏程徐有壬、汪曰楨,歸安張福僖,皆相友善。咸豐初,客上海,識英吉利偉烈亞力、艾約瑟、韋廉臣三人,偉烈亞力精天算,通華言。善蘭以歐幾里幾何原本十三卷、續二卷,明時譯得六卷,因與偉烈亞力同譯後九卷,西士精通幾何者尟,其第十卷尤玄奧,未易解,譌奪甚多,善蘭筆受時,輒以意匡補。譯成,偉烈亞力歎曰:「西士他日欲得善本,當求諸中國也!」<br><br>偉烈亞力又言美國天算名家羅密士嘗取代數、微分、積分合為一書,分款設題,較若列眉,復與善蘭同譯之,名曰代微積拾級十八卷。代數變天元、四元,別為新法,微分、積分二術,又藉徑於代數,實中土未有之奇秘。善蘭隨體剖析自然,得力於海鏡為多。<br><br>粵匪陷吳、越,依曾國籓軍中。同治七年,用巡撫郭嵩燾薦,徵入同文館,充算學總教習、總理衙門章京,授戶部郎中、三品卿銜。課同文館生以海鏡,而以代數演之,合中、西為一法,成就甚眾。光緒十年,卒於官,年垂七十。<br><br>善蘭聰彊絕人,其於算,能執理之至簡,馭數至繁,故衍之無不可通之數,抉之即無不可窮之理。所著則古昔齋算學,詳藝文志。世謂梅文鼎悟借根之出天元,善蘭能變四元而為代數,蓋梅氏後一人云。|《清史稿·列傳二百九十四·疇人二》}}

{| class="wikitable"
|+ 希腊字母表
|-
| Α || 唃 || α || 角
|-
| Β || 吭 || β || 亢
|-
| Γ || 呧 || γ || 氐
|-
| Δ || 口房 || δ || 房
|-
| Ε || 吣 || ε || 訥
|-
| Ζ || 𠳿 || ζ || 尾
|-
| Η || 𱕍 || η || 箕
|-
| Θ || 呌 || θ || 斗
|-
| Ι || 吽 || ι || 牛
|-
| Κ || 𠯆 || κ || 女
|-
| Λ || 嘘 || λ || 虛
|-
| Μ || 𠱓 || μ || 危
|-
| Ν || 㗌 || ν || 室
|-
| Ξ || 口壁 || ξ || 壁
|-
| Ο || 喹 || ο || 奎
|-
| Π || 嘍 || π || 周
|-
| Ρ || 喟 || ρ || 胃
|-
| Σ || 𭈾 || σ || 昴
|-
| Τ || 嗶 || τ || 畢
|-
| Υ || 嘴 || υ || 觜
|-
| Φ || 嘇 || ϕ || 参
|-
| Χ || 𠯤 || χ || 井
|-
| Ψ || 𠺌 || ψ || 鬼
|-
| Ω || 口柳 || ω || 柳
|}

2022年10月1日 (六) 07:54的版本

米利堅羅密士譔,英國偉烈亞力口譯,海寧李善蘭筆述。

——《代微積拾級》

《代微积拾级》,由英国汉学家、来华传教士伟烈亚力(Alexander Wylie,1815年4月6日-1887年2月10日)口译,清代数学家李善兰(1811年1月22日-1882年12月9日)笔述的,1859年由上海墨海书馆(The London Missionary Society Press)出版。原著为美国数学家伊莱亚斯·罗密士(Elias Loomis,1811年8月7日-1889年8月15日)于1851年出版的《解析几何和微积分初步》(Elements of Analytical Geometry and of The Differential and Integral Calculus

李善蘭,字壬叔,海寧人。諸生。從陳奐受經,於算術好之獨深。十歲即通九章,後得測圓海鏡、句股割圜記,學益進。疑割圜法非自然,精思得其理。嘗謂道有一貫,藝亦然。測圓海鏡每題皆有法有草,法者,本題之法也;草者,用立天元一曲折以求本題之法,乃造法之法,法之源也。算術大至躔離交食,細至米鹽瑣碎,其法至繁,以立天元一演之,莫不能得其法。故立天元一者,算學中之一貫也。並時明算如錢塘戴煦,南匯張文虎,烏程徐有壬、汪曰楨,歸安張福僖,皆相友善。咸豐初,客上海,識英吉利偉烈亞力、艾約瑟、韋廉臣三人,偉烈亞力精天算,通華言。善蘭以歐幾里幾何原本十三卷、續二卷,明時譯得六卷,因與偉烈亞力同譯後九卷,西士精通幾何者尟,其第十卷尤玄奧,未易解,譌奪甚多,善蘭筆受時,輒以意匡補。譯成,偉烈亞力歎曰:「西士他日欲得善本,當求諸中國也!」

偉烈亞力又言美國天算名家羅密士嘗取代數、微分、積分合為一書,分款設題,較若列眉,復與善蘭同譯之,名曰代微積拾級十八卷。代數變天元、四元,別為新法,微分、積分二術,又藉徑於代數,實中土未有之奇秘。善蘭隨體剖析自然,得力於海鏡為多。

粵匪陷吳、越,依曾國籓軍中。同治七年,用巡撫郭嵩燾薦,徵入同文館,充算學總教習、總理衙門章京,授戶部郎中、三品卿銜。課同文館生以海鏡,而以代數演之,合中、西為一法,成就甚眾。光緒十年,卒於官,年垂七十。

善蘭聰彊絕人,其於算,能執理之至簡,馭數至繁,故衍之無不可通之數,抉之即無不可窮之理。所著則古昔齋算學,詳藝文志。世謂梅文鼎悟借根之出天元,善蘭能變四元而為代數,蓋梅氏後一人云。

[取自《清史稿·列傳二百九十四·疇人二》]
希腊字母表
Α α
Β β
Γ γ
Δ 口房 δ
Ε ε
Ζ 𠳿 ζ
Η 𱕍 η
Θ θ
Ι ι
Κ 𠯆 κ
Λ λ
Μ 𠱓 μ
Ν ν
Ξ 口壁 ξ
Ο ο
Π π
Ρ ρ
Σ 𭈾 σ
Τ τ
Υ υ
Φ ϕ
Χ 𠯤 χ
Ψ 𠺌 ψ
Ω 口柳 ω